
Implementing Connected Component Labeling as a User Defined Operator for
SciDB

Amidu Oloso1,2, Kwo-Sen Kuo1,3,4, Thomas Clune1

1NASA GSFC, Greenbelt, MD, USA,
2SSAI, Greenbelt MD, USA,

3Bayesics, LLC, Bowie, MD, USA
4University of Maryland, College Park, MD, USA

{amidu.o.oloso, kwo-sen.kuo, thomas.l.clune}@nasa.gov

Paul Brown, Alex Poliakov
Paradigm4

Waltham, MA, USA
{pbrown, apoliakov}@paradigm4.com

Hongfeng Yu

University of Nebraska - Lincoln
hfyu@unl.edu

Abstract—We have implemented a flexible User Defined
Operator (UDO) for labeling connected components of a binary
mask expressed as an array in SciDB, a parallel distributed
database management system based on the array data model.
This UDO is able to process very large multidimensional arrays
by exploiting SciDB's memory management mechanism that
efficiently manipulates arrays whose memory requirements far
exceed available physical memory. The UDO takes as primary
inputs a binary mask array and a binary stencil array that
specifies the connectivity of a given cell to its neighbors. The
UDO returns an array of the same shape as the input mask
array with each foreground cell containing the label of the
component it belongs to. By default, dimensions are treated as
non-periodic, but the UDO also accepts optional input
parameters to specify periodicity in any of the array dimensions.
The UDO requires four stages to completely label connected
components. In the first stage, labels are computed for each
subarray or chunk of the mask array in parallel across SciDB
instances using the weighted quick union (WQU) with half-path
compression algorithm. In the second stage, labels around
chunk boundaries from the first stage are stored in a temporary
SciDB array that is then replicated across all SciDB instances.
Equivalences are resolved by again applying the WQU
algorithm to these boundary labels. In the third stage, relabeling
is done for each chunk using the resolved equivalences. In the
fourth stage, the resolved labels, which so far are "flattened"
coordinates of the original binary mask array, are renamed with
sequential integers for legibility. The UDO is demonstrated on a
3-D mask of O(1011) elements, with O(108) foreground cells and
O(106) connected components. The operator completes in 19
minutes using 84 SciDB instances.

Keywords-Connected Component Labeling; User Defined
Operator; SciDB; MemArray; Weighted Quick Union; array;
mask; connectivity; equivalencies

I. INTRODUCTION
SciDB [1] is an open-source all-in-one data management

and advanced analytics platform that features complex
analytics inside a next-generation parallel array database. It is
based on shared-nothing architecture for data parallelism, data
versioning and provenance. Because it is array-based, SciDB
is more suitable for scientific data analytics than traditional
Relational Database Management Systems (RDBMS’s). It

provides extensive and flexible operators that can be
efficiently “wired” together for more complex operations.
SciDB is also extensible through User Defined Types (UDTs),
User Defined Functions (UDFs) and User Defined Operators
(UDOs).

This paper focuses on developing a UDO that performs
Connected Component Labeling (CCL) of a binary mask
stored as a SciDB array. Typically, such a mask array will be
the result of performing some thresholding on other SciDB
array(s) using a combination of operators/functions. For our
specific examples, we are interested in studying the
climatology of extreme weather events, e.g. winter blizzards,
that may be present in multi-decadal data generated by climate
models or retrieved from ground- and space-based
instruments. In order to study the climatology of these events,
the first step is to locate them and then track the evolution of
each of them in space and time. Each of these events are
represented by a group of connected cells spanning space and
time. CCL is used to uniquely label each group of connected
cells as a separate event. This work is conducted under the
auspices of a larger project where we are using SciDB to
integrate data storage and analysis. This paper also documents
the presentation in [2].

II. IMPLEMENTATION DETAILS

A. Requirements
The use of CCL is ubiquitous in image processing where

images are scanned and pixels are grouped into components
based on some heuristic pixel connectivity. However,
whereby images are usually represented by two-dimensional
binary masks (or pixels), providing SciDB with CCL
capability logically requires an implementation that will
support arbitrary number of dimensions. It is thus important
for the resulting UDO to have usability comparable with other
SciDB operators where arrays of arbitrary dimensions are
easily handled. Moreover, since our interest lies primarily in
earth science applications where we may have periodic
boundary conditions and/or may desire to enforce
connectivity in any combination of the dimensions, our
implementation must provide means to support these. Finally,
our implementation must leverage SciDB’s efficient ability to

https://ntrs.nasa.gov/search.jsp?R=20160014542 2020-05-09T09:40:19+00:00Z

handle larger-than-physical-memory arrays. This is
particularly important for the CCL computation given the
transitive nature of connectivity that induces large memory
footprint.

B. Steps for meeting the requirements
• Arbitrary dimensionality: Each foreground pixel is

uniquely identified by the pixel’s flattened
coordinate. This makes it easier to generically create
pairwise neighbors that satisfy some specified
connectivity, including periodic boundary cells that
are adjacent. Connected pairwise neighbors is key
input to the Weighted Quick Union (WQU) with
half-path compression algorithm [3] used for the
CCL computation. For an N-dimensional array, this
identifier is computed as

𝑃"#$%&	 = 𝑥*+, + 	 (𝑥$*+/

$ 𝐷1)*+/
13$4, (1)

where 𝑃"#$%&	 is the flattened coordinate for cell at
coordinates 𝑥";	𝑖 = 0, 1, . . . 𝑁 − 1 . Dr is the extent
of dimension along coordinate r.

• Flexible connectivity: This is achieved by an
auxiliary array of the same dimension as the mask
array but with an extent of three (3) in each
dimension. For example, for 2-D, the connectivity
array can be plotted as shown in Fig. 1.

• Larger than physical memory arrays: SciDB
provides MemArray, a data object with associated
methods for handling large arrays distributed in
chunks across all instances. It allows for each chunk
to be operated on at a time by each instance.
Parallelism comes from all instances working
concurrently. This mechanism is used extensively in
our implementation to manage memory usage.

C. Implementation Description
The implementation is illustrated by the simple example

2-D mask array shown in Fig. 2 where foreground cells are in
black. The complete array is distributed into four chunks,
each occupying a quadrant in Fig. 2. In general, chunk
assignment to instances is managed by SciDB using a
heuristic hash function. 4-connectivity is assumed for this
illustration. Each foreground cell is first uniquely represented

by its flattened coordinate as described in Section II(B).
There are four stages to the implementation. In Stage 1,

each instance computes labels for its chunks, one chunk at a
time. Parallelism is achieved by all instances proceeding
concurrently. In this stage, the 4-connectivity auxiliary array
is applied to each foreground mask to determine pairs of
adjacent cells. Duplicate pairs are eliminated. The WQU
algorithm is applied to each pair to determine the CCLs for
the chunk. The CCLs are then written to MemArray. Fig. 3
shows the CCLs for each chunk after the first stage.

In Stage 2, label equivalencies are resolved. The
MemArray from Stage 1 is parsed for boundary labels. These
boundary labels are written into a new MemArray that is then
replicated on all instances such that each instance has a global
view of all boundary labels. Like in the first Stage, the 4-
connectivity auxiliary array is applied to each label to
produce pairs of connected boundary labels and the WQU
algorithm is applied to generate CCLs of labels that are
connected along the chunk boundaries. These resolved
boundary labels are written to a 1-D MemArray indexed by
boundary labels from Stage 1 to ensure fast access during the
next stage i.e. Stage 3. A 2-D rendering of the resolved
boundary labels is shown in Fig. 4.

 In Stage 3, the labels from Stage 1 are relabeled and
written to a new MemArray by propagating the resolved
boundary labels inward as necessary using the 1-D
MemArray from Stage 2 as follows:

if stage2_array[stage1_label] ! NULL :
stage3_label <- stage2_array[stage1_label]

else :
stage3_label <- stage1_label

Fig. 5 shows the result after Stage 3.

For the fourth and final stage, a relabeling is done such

4-connectivity 8-connectivity

(a)

2-connectivity

(b) (c)
Figure 1. Sample 2D Connectivity Arrays.

Figure 2. 2-D Mask Array for demonstrating the UDO CCL
implementation

that the out-of-order labels (represented by a subset of the
“flattened” coordinates of the original mask array) are now
represented by sequential integers for legibility. The result of
this stage is shown in Fig. 6.

The new CCL UDO, named “ccl” is invoked as follows
via SciDB’s Array Functional Interface (AFL) as:

iquery -anq “store(ccl(mask_array, con_array), ccl_array)”

where “ccl” is the new CCL UDO, “store” is the SciDB native
operator to write results into an array, “mask_array” is the
binary mask array, “con_array” is the connectivity array and
“ccl_array” is the array into which the resulting CCLs are
written.

If boundary conditions are periodic, say in both
directions, the new operator will be invoked with additional
(integer) parameters such as:

iquery -anq “store(ccl(mask_array, con_array, 1, 2), ccl_array)”

where the additional parameters “1” and “2” simply means
periodicity should be applied in both directions. For our 2-D
example, this invocation produces the labels shown in Fig. 7.

III. REAL LIFE USE CASE
The motivation for our real life application was to study

the climatology of winter blizzards present in the gridded
GEOS-5 MERRA hourly data spanning a 37-year period from
January 1, 1979 to December 31, 2015, where GEOS-5 stands
for the Goddard Earth Observing System Model, Version 5
[4], and MERRA stands for Modern-Era Retrospective
analysis for Research and Applications [5]. MERRA has a
horizontal spatial resolution of ⅔° in longitude and ½° in

latitude. Thus, this amounts to approximately
~24×365×37=324,120 time slices, each containing
540×361=194,940 grid cells, totaling ~6.32×1010 grid cells.
Each cell, however, contains multiple variables that need to be
processed in our use case.

The details for computing the mask array where
foreground cells are identified as those meeting a blizzard
threshold have been presented in [6]. The baseline SciDB
array used to compute the mask array in [6] was created by
assembling necessary variables (or attributes in SciDB
terminology) pulled from four hourly data sets of GEOS-5
MERRA namely: MAT1NXFLX [7], MAT1NXLND [8],
MAT1NXSLV [9] and MAC0NXASM [10]. The focus of the
present work was to study the viability of the CCL UDO for
identifying blizzards as distinct events. An event in this
context is a group of blizzard cells connected in spatial and
temporal coordinates by a defined connectivity criterion
represented by the auxiliary connectivity array.

Consequently the mask array generated by [6] is 3-D i.e.
2-D space and 1-D time and it is O(1011) in size. The number
of foreground cells is O(108). The connectivity array used is
the 3-D equivalent of the 4-connectivity array of the 2-D case
shown in Fig. 1, i.e. two cells are considered connected if they
share a same facet. The new CCL UDO is able to accurately
compute all labels totaling over one million, i.e. O(106). Fig.
8 shows the presence of two blizzard events in central and
eastern United States at hours 1330Z and 1430Z on February
5, 2010. Fig. 9 shows the same events at 18:30Z and 19:30Z
with the event to the west already dissipated at 19:30Z. The
top rows of Fig. 8 and Fig. 9 show the mask array while the
bottom rows show the events accurately identified by the CCL
UDO.

Figure 3. CCLs after Stage 1
Figure 4. Boundary CCLs after Stage 2

IV. COMPUTATIONAL PERFORMANCE
Table 1 shows the wall times, as a range, for the different

stages of the CCL UDO for the real life use case. The lower
number is for the fastest instance and the higher number for
the slowest. It should be noted that the reported times include,
as necessary, computation of connected pairs, computation of
the CCL, reading from MemArrays and writing to
MemArrays. As expected, with the exception of stage 2, the
scalability is reasonable. The equivalency resolution part of
stage 2 that does not scale also happens to dominate the
computational cost. This is because the foreground boundary
cells for all chunks are involved in this part of the work. We
are looking for ways to improve the scalability for this phase
to reduce the total wall time. One critical goal that we have

achieved is that the operator can compute CCL for arbitrarily
large mask arrays within a reasonable amount of time without
running out of physical memory, which our previous
implementations failed to accomplish. For our use case, it took
under twenty minutes to compute the CCL using 84 SciDB
instances.

V. CONCLUDING REMARKS
We have implemented a UDO to compute CCL within

SciDB. The UDO has been demonstrated on a real life use
case where over a million labels were computed in under
twenty minutes to represent blizzard events in 37 years of
hourly GEOS-5 MERRA data. The UDO is able to leverage
SciDB’s MemArray to handle larger than physical memory
cases. While most part of the UDO scales with number of
instances, the equivalency resolution i.e. stage 2 which
dominates the wall time requires significant improvement.
This is a subject for future effort.
Additionally, the arrays that we deal with continue to grow in
the time dimension. It is impractical and unreasonable to re-
compute all labels each time we add new time slices especially
since most events will last only a limited number of time steps.
Therefore, it is important to only compute labels that have not
been completed in the previous computations. Hence, another
area of future effort is to augment the CCL UDO with the
ability to exclude labels that have been completely resolved
previously from any later computations due to the addition of
new time slices.

TABLE I. WALL TIMES FOR THE STAGES OF THE CCL UDO (SECONDS)

Stage Number of Instances
14 28 56 84

1 88 - 114 41 – 54 21 - 27 12 – 18
2 (replicate) 9 – 12 7 – 9 6 - 12 6 – 14
2 (resolve) 725 - 940 715 - 950 705 - 935 705 – 975
3 240 - 320 115 - 160 85 - 120 33 – 55
4 364 - 475 180 - 240 90 - 125 49 – 81

Figure 5. CCLs after Stage 3 Figure 7. CCLs with periodic boundary conditions

Figure 6. CCLs after Stage 4 (Final Stage)

ACKNOWLEDGMENT
This work was primarily funded by the NASA Earth

Science Technology Office (ESTO) through its Advanced
Information Systems Technology (AIST) Program. It is also
partially supported by the National Science Foundation’s
(NSF) EarthCube program.

REFERENCES
[1] Paradigm4, “SciDB http://www.paradigm4.com/technology/”
[2] A. Oloso, K.-S. Kuo, T. Clune, P. Brown, and A. Poliakov,

“Implementing connected component labeling as a user
defined operator for SciDB,” 9th Extremely Large Databases
Conference (XLDB 2016), 24-26 May 2016, Menlo Park CA,
http://www-conf.slac.stanford.edu/xldb2016/.

[3] R. Sedgewick, and K. Wayne, “Algorithms, 4th ed., section
1.5,” 2002-2014, http://algs4.cs.princeton.edu/15uf/.

[4] Global Modeling and Assimilation Office (GMAO), “GEOS-5
SYSTEM,” https://gmao.gsfc.nasa.gov/GEOS/.

[5] Global Modeling and Assimilation Office (GMAO),
“MERRA,” https://gmao.gsfc.nasa.gov/GEOS/.

[6] K.-S. Kuo, A. Oloso, M. Bosilovich, A. Collow, M. Rilee, T.
Clune, “Thirty-plus (30+) Years of Snowstorm Climatology
Obtained from MERRA Ranalysis,” 96th AMS Annuak
Meeting, 10-14 January 2016, New Orleans, LA,
https://annual.ametsoc.org/2016/.

[7] Global Modeling and Assimilation Office (GMAO) (2008),
tavg1_2d_flx_Nx: MERRA 2D IAU Diagnostic, Surface
Fluxes, Time Average 1-hourly V5.2.0, version 5.2.0,
Greenbelt, MD, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC), Accessed June
2015. doi:10.5067/4EQ54AKI405R.

[8] Global Modeling and Assimilation Office (GMAO) (2008),
tavg1_2d_lnd_Nx: MERRA 2D IAU Diagnostic, Land Only
States and Diagnostics, Time Average 1-hourly V5.2.0, version
5.2.0, Greenbelt, MD, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC), Accessed June
2015. doi:10.5067/YL8Z7MICQZF9.

[9] Global Modeling and Assimilation Office (GMAO) (2008),
tavg1_2d_slv_Nx: MERRA 2D IAU Diagnostic, Single Level
Meteorology, Time Average 1-hourly V5.2.0, version 5.2.0,
Greenbelt, MD, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC), Accessed June
2015. doi: 10.5067/B6DQZQLSFDLH.

[10] Global Modeling and Assimilation Office (GMAO) (2008),
const_2d_asm_Nx: MERRA DAS 2d constants V5.2.0,
version 5.2.0, Greenbelt, MD, USA, Goddard Earth Sciences
Data and Information Services Center (GES DISC), Accessed
June 2015. doi:10.5067/HEE4F4IL912I.

2010-2-5 13:30 2010-2-5 14:30

2010-2-5 18:30 2010-2-5 19:30

Figure 9. Same events as Fig. 8 but at 1830Z and 1930Z.
Note: Only on event persists beyond 1830Z

Figure 8. Two blizzard events at 1330Z and 1430Z of February 5, 2010.
Top row: binary mask. Bottom row: the events identified by the new UDO

